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This theoretical and experimental investigation inquires into the various steady and 
unsteady motions that are possible when a highly viscous liquid partly fills a closed 
circular cylinder rotated about its horizontal axis at constant angular velocity. 
Fillings leaving an air bubble in the range roughly 10-20% by volume provide the 
most lively variety of observable phenomena. 

The full hydrodynamic problem is too complicated to be amenable to quantitative 
theoretical treatment, except by numerical analysis which is not yet available ; but 
the abstract qualitative theory developed in $2 appears to capture all the essentials 
of experimentally found behaviour. An analogous finite-dimensional system, such as 
would be presented by a close finite-element approximation, is used to illuminate 
principles governing the order of multiple solutions and their stability. Then the 
connection between the full problem and the analogue is demonstrated. Finally 
a simple argument is outlined confirming the observed stability of the motion at 
small rates of rotation. 

The experiments are described in $3  and their results presented in $4. For various 
values of the cylinder’s aspect ratio, estimated singularities of the time-independent 
solution set are recorded as several-branched graphs of wv/gR versus volume fraction 
filled by liquid (w is the angular velocity of the container, R its radius and v the 
kinematic viscosity of the liquid). The experimental observations are discussed in $5. 

1. Introduction 
The class of nonlinear phenomena examined here was probably noticed many times 

in the distant past, but the first record of it how,  to us is a brief note by Balmer 
(1970). The most prominent effects in question are easy to demonstrate roughly and 
they are very striking. An accurate, repeatable account of them experimentally is 
quite demanding, however, which fact may explain why no thorough investigation 
has yet appeared. 

An example of these cellular flows is shown in figure 1, although this photograph 
is not a view of the apparatus used in the experiments to be reported. A transparent, 
circular cylindrical container is filled partly (85%, say) with a highly viscous liquid 
and closed off, so that an air bubble is left inside. The cylinder is mounted with its 
axis horizontal and is rotated about the axis at constant angular velocity w .  When 
w is small enough, the bubble assumes an elongated stationary form near the top of 
the cylindrical space, being covered above by a thin layer of moving liquid but 
otherwise not being much different from its configuration when the cylinder is at rest. 
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FIGURE 1 .  Example of steady form taken by bubble after division into two parts, viewed in 
horizontal direction perpendicular to axis of rotating cylindrical container. 

As w is gradually increased from small values, the bubble is displaced progressively 
further in the direction of rotation; and ultimately, when w is raised to a critical value 
w,, the bubble suddenly divides and evolves into a stationary form in two disjoint 
parts as shown in figure 1. (The transformation into just two bubbles depends, of 
course, on the aspect ratio of the cylinder being not too great; in our experiments 
the length was at most 3.4 times the radius.) With the bubble in its divided state, 
gradual reductions in w can be made to well below o, before fmally there is an abrupt 
reversion to the undivided form. Thus a strong hysteresis is demonstrable. This and 
several other nonlinear effects, involving both stationary and time-dependent 
motions, are to be examined in detail. 

We confme attention to the case where the viscosity of the liquid is high enough 
for inertial effect to be negligible. Evidently an interesting range of phenomena is 
compatible with this simplification, which makes a theoretical account accessible 
although still quite difficult. For his experimental observations Balmer (1970) used 
heavy oils, but their viscosities were probably not high enough to make the present 
model secure ; so the phenomena in question should not be considered tied exclusively 
to situations where a Stokes-flow approximation is accurate. On the other hand, our 
experiments using Golden Syrup were designed to obviate the further complications 
of significant inertial effects. 

Cellular structures exhibited by internal free surfaces in rapidly rotating liquids 
of small viscosity have been reported by various authors (e.g. Phillips 1960; Debler 
& Yih 1962; Karweit & Corrsin 1975) ; and no doubt the same general principles from 
singularity theory as will be used interpretively here could be applied also to some 
of these other observations. But nothing in this direction will be attempted at present. 
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Other notable antecedents are the theoretical papers by Ruschak & Scriven (1976) 
and Orr & Scriven (1978) dealing with steady ‘rimming flow’ of a liquid with free 
surface inside a horizontal rotating cylinder. The latter paper has particular interest 
in presenting exemplary numerical solutions of the full Navier-Stokes equations with 
free-boundary conditions accounting for gravity and surface tension. But the 
theoretical model is two-dimensional, so having little relevance to the present topic. 

We must acknowledge, however, that our work has considerable affinity with the 
investigation by Moffatt (1977), which dealt with waveforms in the free surface of 
a viscous film transported on the outside of a rotating solid cylinder, and also the 
recent investigation by Pritchard (1986) into the multiplicity of states observable 
when a viscous liquid flows over the end of a broad inclined plate. To explain his 
practical observations, Moffatt developed a largely satisfactory account based on 
approximations akin to those of lubrication theory; but this approach seems 
unavailing for the present problem. Contrarily, it  may be appreciated that for 
Moffatt’s problem in toto, for Pritchard’s and indeed for any other problem of highly 
viscous flow with a free surface under gravity and surface tension, the general 
theoretical frame to be assembled below is almost immediately serviceable and its 
qualitative conclusions can guide the interpretation of observed phenomena. 

The theory presented in 52 has two stages. First, in 52.1, the properties of a 
finite-dimensional nonlinear evolutionary system analogous to the hydrodynamic 
system are examined in sufficient detail to establish general principles bearing on the 
classification of multiple steady solutions, their possible patterns of behaviour as 
parameters are varied and their stability. Then, in 52.2, the precise relation between 
the hydrodynamic system and the analogue is exposed, revealing a powerful source 
of qualitative information. The complete problem appears to be far too difficult for 
quantitative theoretical predictions with any reliability, except by numerical means 
which would still be difficult and nobody has yet tried. Thus the oblique, abstract 
approach adopted is enforced by necessity, and short of still needed mathematical 
precision as regards function classes and the better definition of formal operations 
it goes about as far as seems feasible at present. Perhaps the most persuasive 
justification for the two-stage description is that, when numerical solutions by finite 
elements are attempted in due course, the model examined in 52.1 should be 
exemplified essentially. 

The experiments reported in 553 and 4 cover an admittedly narrow parameter 
range but do so more or less comprehensively. Their aim was to establish in the light 
of the theory a secure demonstration of principles underlying observable behaviour, 
and we eschewed the huge variety of striking flow patterns - comparable with the 
variety in Pritchard’s interesting study -that is possible in rotating, partly filled 
cylinders of greater length. 

2. Theory 
The flow system in question is too complicated to be amenable to constructive 

treatment, except perhaps by numerical analysis which may in due course be 
attempted. Here only a number of qualitative facts about it will be established, but 
they appear to capture its salient mathematical properties. 

2.1. Finite-dimewiml analogue 
For reasons to be explained presently, a close affinity can be appreciated to exist 
between this flow system and the finite-dimensional system described as follows, 
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which too is controlled by dissipative effects and is free from inertial effects. Suppose 
the configuration of the model system to be determined by generalized coordinates 
qk (k = 1,2, ..., n), denoted collectively by q,  and write (jk = dqk/dt,  collectively 
q = dq/dt. In  general any motion of the system is described by the n ordinary 
differential equations 

aF i3V -+- = 0, 
%k %k 

in which F: W2n + W is a Rayleigh dissipation function depending on q and 4 (cf. Lamb 
1932, $368) and V: Rn+R depending only on q is the potential energy of the system. 
In common with the simplest examples of systems with dynamical equations in the 
form (l), F is a quadratic function of q ;  but a crucial difference here is that F is not 
homogeneous in q. Specifically, using the convention that summation over 1, . . ., n 
is implied by each repeated subscript, we suppose that 

= $ k l ( q )  [#k+&k(q)] [ @ l + & l ( q ) ] ,  (2) 

where (akz) is a given symmetric matrix of functions of q alone which is positive definite 
for all q, and the Qr are given functions of q alone depending on a parameter, say 5. 
Thus the equations (1) become 

with Rk = akl Ql evaluated in q. 
A steady state of the system (3) is a solution, say 1, of the equations 

and plainly its stability depends on the roots A of the determinantal equation 

where 

Excluding for the moment the case of a zero or purely imaginary root, we recognize 
that the state i j  is stable if and only if all the roots h have negative real parts. Note 
that the matrix (Mkz)  is generally not symmetric because (aR,/aq,) is not, so the 
symmetry and positive definiteness of (akz)  do not guarantee that all the roots A are 
real. The possibilities of spiralling orbits close t o  i j  and of Hopf bifurcations are thus 
admitted by the present system. 

Let us next consider how to classify multiple solutions of (4), which may interact 
at singular points as the functions Qt and hence fit are varied parametrically. For 
the reason mentioned just above, more specifically because skLm aRz/aqm =+ 0 in 
general, the n-vector R cannot be represented as the gradient of a scalar. Consequently, 
elementary Morse theory cannot be used for the present purpose. Brouwer degree 
theory is applicable, however, and it accounts neatly for the main properties in view 
(cf. Lloyd 1978, Chapters 1 and 2). 

Let us suppose for the sake of clarity that V E Cz(Rn + W )  and R E  O ( R n  + W n ) ,  so 
that each component of (i l lkz) is a continuous function; but it would in fact suffice that 
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f is continuous Rn + Rn (Lloyd, 8 1.4). Again momentarily excepting the singular case 
where det [Mkl(ij)]  = 0, we define the index of a solution ij of (4) to be 

i(ij) = f 1 accordingly as det [Mkl(ij)]  2 1. (6) 

Note that the determinant in (6) equals the product of all eigenvalues of (Mkl( i f ) ) ;  so 
i(ij) defined by (6) is the same as ( - l )p ,  where /3 is the number of negative real 
eigenvalues with allowance for multiplicity. Complex eigenvalues occur in conjugate 
pairs and so do not affect the expression for i(q). 

Next, with reference to any bounded domain A c Rn with no solution of (4) on 
its boundary ad but with N 2 0 solutions i j ( l ) ,  . . . , ij@" in its interior, the degree of 
f relative to A is defined as the integer 

N 

m-1 
degdf,A)= X i(#")) i f N 2 1 ,  

= o  i fN=O.  
(7) 

Degree is otherwise calculable from the action off on ad alone, and the definition 
is thus extensible to cover the critical case of solutions with det [Mkl]  = 0. The index 
of such solutions is generally 0 or & 1, but rarely may be any integer, according to 
how the critical point in A is unfolded as a parameter offis varied. The most useful 
properties of degree in present respects are listed as follows. 

(i) Suppose that, as a parameter 3 off is vaned continuously over a closed interval 
9, no solution of (4) occurs on the boundary &I of A. Then deg(f,A) remains the 
same for all [E 9. 

This property ensures that, as 3 or any other parameter is varied continuously, 
changes in the solution set can occur only in strictly limited patterns. For example, 
new solutions cannot arise singly; nor can solutions disappear singly. As illustrated 
in figure 2 (a) ,  on the other hand, solutions can arise or disappear as a pair branching 
from a singular point with index 0. Away from the singular point (turning point) one 
branch of solutions has index 1 and the other has index - 1. Two other well-known 
patterns of behaviour complying with property (i) are illustrated in figures 2 (b) and 
2 (c), being explained in the caption, and together with the first case they suffice to 
account for the main experimental observations to be presented later. 

(ii) Being in effect a special case of (i), the next property is useful for calculating 
deg (f, A )  directly from knowledge off: i3A + Rn. Consider the homotopy W(s) = 
s f + (1 - s) I, 0 < 8 < 1. If there is no element q E ad satisfying s f (q)  + (1 - s) q = 0 for 
any 5~ [0,1], then deg (I@), A )  is independent of s in this interval. Thus deg (f, A )  = 
deg(I,A), which is 1 if O E A .  

To incorporate an attribute typical of hydrodynamic problems, it may be supposed 
that the condition for this property to hold is satisfied when A is a ball 141 < r of 
sufficiently large radius r. Then the sum of the indices of all time-independent 
solutions is 1. Consequently, except at critical parameter values, the number N of 
such solutions is odd, being composed of &V+ 1) solutions with index 1 and +(If- 1) 
with index - 1. Although not yet proven, this situation appears to apply in the flow 
system examined below. 

(iii) Any non-critical solution ij of (4) with i(ij) = - 1 is an unstable solution of (3). 
To prove this property consider the determinant on the left of (5 )  as a function of real 
A 2 0. By the definition (6) of index, the determinant is negative for h = 0 in the 
present case. But it must become positive for sufficiently large h because det (akl) is 
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I 

/ 

,-I- . 

5 

(4 
FIQURE 2. Examples of singularities in solution set parameterized by 6. Here f is any function 
discriminating between solution branches; and singular points with index 0 are circled. (a) Branches 
with indices 1 and - 1 terminated at turning point. (b) Unfolding of transcritical bifurcation as 
second parameter E is varied. (c) Symmetry-breaking bifurcation from stable branch in ([,f )-plane, 
asymmetric part of solution being represented by f g .  Indices calculated only in the class of 
symmetric functions are given in parentheses (cf. $5). 



Cellular flows in a horizontal rotating cylinder 405 

positive as a necessary condition for the poitive-definiteness of (akl). Therefore (5) 
has a real root A, > 0, and an implication of (5 )  is that there is a non-zero vector 
11 E Rn satisfying 

A1akl?ll+Mkl?ll = O  (k = 1 ,  ..., n) .  

The equations linearizing (3) relative to i j  thus have a solution 11 exp (h,t) which 
increases without bound as t + 00. Consequently, since the terms V V and R in (3) are 
continuous in qthe Lyapunov stability of q is denied in respect of every relevant 
metric. 

Because of (iii) the condition i = 1 is necessary for stability of a non-critical 
stationary solution. But it is not a sufficient condition for stability. (For example, 
both M and a-'M may have just two negative real eigenvalues, so that the respective 
steady solution i j  has i = 1 but is evidently unstable.) 

It is noteworthy that the same set of general rules referred to Leray-Schauder 
degree was shown by Benjamin (1976) to apply to steady solutions of the Navier- 
Stokes equations in bounded domains with solid, tangentially moving boundaries. 
The simple proof of (iii) above compares with the proof of Theorem 3 in the cited 
paper. In various subsequent papers (e.g. Benjamin 1978a, b;  Benjamin t Mullin 
1982; Cliffe & Mullin 1985) these rules have been used extensively to explain observed 
bifurcation phenomena in fluid flows at moderate Reynolds numbers. 

2.2. The hydrodynamic problem 
Returning to the problem described in § 1, we have to establish its relation with the 
simpler system discussed above. Let Do denote the domain occupied by the bubble, 
which domain generally depends on time t and is not necessarily connected or simply 
connected, and let S denote its boundary, the free surface. The domain occupied by 
the viscous liquid is denoted by D,  so that the interior of the circular cylinder is 
Do u S u D, and the outer boundary composed of the solid cylindrical wall and plane 
endwalls is denoted by B. In terms of Cartesian coordinates the closed surface S has 
an arbitrary parametric description in the form 

4 = Xi@, B, t )  ( i  = 1,2 ,3) ,  (8) 

where (a, 8) ranges over a fixed rectangle 51 ; and we can particularize the description 
to the extent that the functions Xi become independent oft when the bubble is steady 
(i.e. (8) is not a Lagrangian description of the motion of liquid particles in S). The 
functions Xi are considered to constitute the solution of the problem, fully describing 
the observable shape, size, and position of the bubble. For similar uses of a parametric 
representation in treatments of free-surface problems, reference may be made to two 
recent papers (Benjamin & Olver 1982, Appendix 1 ; Benjamin 1987, $2). 

Considering y1 = a(&, X,)/a(a, /3) together with yz and y3 correspondingly defined 
in cyclic order, and writing J = ( ~ $ 2  0 (with summation convention), we note y,/J 
to be the components of the unit normal n to S directed into the liquid. The area 
of S is 

r r 

IS1 = ds = J J d a d p ;  
S n 

and we shall use the well-known fact that the first variation of IS1 is given by 

c 
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where H is the (inward) mean curvature of S. (The notation of (9) and comparable 
expressions to follow should be understood to abbreviate the formal definition of a 
Gateaux derivative with respect to the inner product for L2(51) (cf. Benjamin 1987, 

The volume of the bubble is assumed to be fixed. Therefore its potential energy is 
W-) 

” 

where u is the coefficient of surface tension, p is the density of the liquid and xs is 
a coordinate directed vertically downward. Hence, according to a standard definition 
and in view of (9), the functional derivatives of V with respect to variations in X,, 
subject to the constraint that the volume of Do is fixed, are seen to be 

The Lagrange multiplier P respecting the volume constraint can be identified with 
the constant pressure inside the bubble. 

To describe the motion of the liquid, consider the velocity u = (ul, u,, u3) (x, t )  and 
pressure p ( x ,  t )  defined over D. It is convenient to express the stress tensor relative 
to hydrostatic pressure, thus 

7ij = -(P--PSxr)Si,+2perj(u), 

where p is the viscosity of the liquid and 

e,,(u) = t(ut,,+u,,t) 

is the strain-rate tensor. The assumed incompressibility of the liquid requires 

divu = U*,$ = 0 in D; (13) 

7i , , j (U)  = 0 in D. (14) 

and on the assumption that inertial effects are negligible the dynamical equations 
are 

The cylindrical container rotates about its axis with singular velocity w ,  and it will 
be helpful to introduce the notation w U ( = o x x in the obvious sense) for the velocity 
field corresponding to rigid rotation everywhere with this angular velocity. The 
boundary conditions at the solid walls of the container are then expressible by 

u = o u  on B, (15) 

and it is of course through (15) that the parameter w enters the mathematical 
problem. The boundary conditions a t  the free surface S are next considered. First, 
there is the kinematic condition relating the normal component of velocity in the 
liquid and the rate at  which S is displaced normally; thus we have 

Y r 4  = Y J r  on 52 

with = aX,/at.  (Note the deliberate use of ya in (16), rather than equivalently 
n, = y r / J ,  and reference to 51 rather than S. This distinction highlights that u I will 
like X be considered abstractly as a function of a, and t . )  Secondly, there is the 
condition of zero tangential stress, which is expressible for i = 1,2,3 by 

Yj77u-Yrnjnk7jk = 0 on 52. (17) 
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The third and final condition at the free surface represents the balance of normal 
stress in the liquid against the net effect of the pressure inside the bubble and the 
normal-stress discontinuity due to surface tension. Thus, using (17) and recalling the 
special definition (12) of T#,, we have 

Yr (n, nk 7,k 1 = Yt ( - p + 2aH + Pgx,  1 on a. (18) 

Now, it is known that, for a given instantaneous configuration of the free boundary 
S, the velocity u in D is uniquely determined as a solution of (13), (14) and just the 
three boundary conditions (15), (16) and (17). In  fact, according to the variational 
principle discovered by Korteweg (1883), as elaborated comprehensively by Keller, 
Rubenfeld & Molyneux (1967, $2) and extended by Skalak (1970) to include the 
effects of surface tension, the solution u can be characterized uniquely a s  follows, 
Among all solenoidal vector fields defined in D and satisfying these boundary 
conditions, u is the minimizer of the convex functional 9-2p, where 9 expresses 
the rate of dissipation in the liquid and = dV/dt. Since u is thus uniquely 
determined a transformation of X and 2, its dependence on the parameter w being 
imposed by (15), the remaining boundary condition (18) constitutes the functional 
relation between X and 2 that decides the evolution of S. 

To expose the essential form of this relation, details of the Korteweg principle 
are now presented in a new light (cf. Keller et al. 1967, $2). The dissipation function 
akin to that introduced in (1) is P = +9, so being the integral of the scalar +T$,(u) e,,(u) 
over D.  Because of (12) which implies e,, = 0, we thus have 

where dv is short for dxl dx2 dx8. The next step is to consider the variation of F due 
to inihitesimal variations of 2 with X held fixed, so that S and D are not varied. 
Evidently this is 

P 

SP = 2p e,,(u) e,,(Su) dw ; 
JD 

and because of (13) the integrand is the same as 

*r,(u) (Jur,,+Su,,t) = 7t , (WUr, ,  

= [7&) SUrI , , -7r j , j (U)  8% 
= [7*,(u, Surl,,, 

where the first equality follows from the symmetry of Ti, and the last from (14). Since 
the integrand is thus a divergence, the integral expressing SP can be reduced by 
Gauss's theorem to a surface integral over the boundary S U B of D. The integral 
over B is zero because Su = 0 there, and so the result is 

r 

(Remember that n is directed into D.)  
With S fixed, (16) implies that 

Yt 8% = Yr G. 
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Moreover, this basic relation between Su and 8 2  can be used to reduce (21) when the 
tangential-stress condition (17) satisfied by u is used. Thus we deduce finally that 

SF = - j, [n, nk T&)] yz S X i  da dp. 

This identity holds for arbitrary 8 2  subject only to the constraint 

Jl, Yz-&dadB = 0 

imposed by incompressibility of the liquid. Thus (23) establishes that 

where terms (const.)?* respecting the constraint (24) can be left implicit on the 
right-hand side since they will be subsumed by the terms -Py, in (11) .  (In other 
words, the concomitant constraints that the liquid is incompressible and that the 
volume of Do is fixed will be represented in (26) below by the single Lagrange 
multiplier P.) 

Comparing (18) with (1 1)  and (25), we see that the evolutionary system of equations 
for the bubble surface S is expressible as 

( i  = 1,2,3) ,  
6F SV -+-= 0 
&Xi SXi 

which compares with (1) .  This conclusion is admittedly formal, but it appears to be 
the key to understanding the complicated behaviour observed experimentally. 

Much nevertheless remains to be done towards clarifying the mathematical 
problem, which is far from easy. In particular, there is a need to clarify the 
transformations implicit in (26) by identifying them as operations on appropriate 
function classes for Xand 2. A more demanding objective is to confirm that a degree 
theory akin to the one outlined in $2.1 applies to the set of steady solutions, for which 
of course the terms SF/dXi in (26) do not vanish unless o = 0. A difficulty facing any 
attempt to formulate such a theory is spotlighted by the experimental facts: namely, 
for certain steady solutions Do is divided, so that the bubble surface S bounding Do 
has disjoint components. In general, therefore, representation of every steady 
solution X as a continuous function of (a,/3) on $2 is impossible, and continuous 
dependence on a third parameter unfolding discontinuities may need to be introduced 
for a degree-theoretic ordering of all the steady solutions. (Note that this difficulty 
is peculiar to a collective account of the steady solutions, not to time-dependent ones. 
Over an appropriate time interval T, the evolution of a divided bubble from a 
connected one or vice versa is representable as a continuous function X(a,P,t) on 
$2 x T. The third parameter likely to be needed for a unified classification of steady 
solutions might represent the partition of the volume of Do between disjoint bubbles.) 

Notwithstanding the incompleteness of the theory in detail, plausible implications 
can be drawn from (26) in the light of the comparatively simple facts established 
about the analogue (1).  Perhaps the most telling implication is that a good 
finite-dimensional approximation of the hydrodynamic problem, such as by finite 
elements, should admit organization to present exactly the situation reviewed in 

While deferring details of a finite-element approximation as topic for subsequent 
$2.1. 
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study, we may note the structural affinity between the function X of a, p, t and the 
approximating n-vector q introduced in f 2.1, likewise between 8 and q. The scalar 
F defined by (19) evidently is positive-definite; through (16) its dependence on 8 is 
quadratic although not homogeneously so ; and F depends in complicated fashion on 
X through (16) and (17). Note also that the present counterparts of Q in (2) are the 
- time-independent velocity fields, say i i(x),  that correspond to steady solutions 
X(a, p) of (26). Thus each ii is a solution of (13)-( 17), with 8 E 0 in (16), such that 
the respective form of S allows (18) also to be satisfied. The trivial solution ii = wU 
in D holds uniquely in the absence of a bubble; and although not comparable with 
Q in (2) it may be considered in the following way, which illuminates the dependence 
of X(a,B, t )  on w .  Writing u = wU+u', we have that u' vanishes on B, satisfies (13) 
and satisfies (14) since 7$,(wU) = 0. For the same reason the stress conditions (17) and 
(18) at the free surface have to be satisfied by u' alone; but (16) becomes 

Y A  = Yc(&-wuc) on Q, (27 1 
which confirms as expected that the determination of u' for given S depends on wU 
as well as 8. Evaluation of F and all the steps from (19) to (25), in particular (21), 
proceed in terms of u' exactly as in terms of u. However, the facts of (26) depending 
implicitly on w and its first terms not reducing simply when 8 = 0 are perhaps made 
more conspicuous by (27). 

Other details of the correspondence between the present system and the finite- 
dimensional analogue could be exhibited, but the gist of the theory is already clear 
enough for the interpretation of our experimental results. Two further points deserve 
brief attention, however, to close the theoretical discussion. 

First, we should acknowledge our implicit assumption that the viscous liquid wets 
the solid boundary B above the top of the bubble. In other words, B and S are taken 
to be disjoint. This situation can be safely presumed to hold in any steady state with 
w > 0, and in any case when after being started from rest the cylindrical container 
(at which a no-slip condition always applies) has turned far enough to immerse any 
originally unwetted patch above the bubble. But a much more complicated situation 
evidently may prevail for a short time after starting, during which the present theory 
is inapplicable. 

Finally, we outline a plausible, comparatively simple argument showing that the 
steady state realized at a small enough value of w > 0 is stable, as might be expected; 
and incidentally we demonstrate a property that corresponds to the positive- 
definiteness of the matrix (a$,) introduced in (2). Consider the linearized perturbation 
equations relative to a time-dependent solution x(a,P) of (26). Corresponding to the 
perturbation 

X =  x + e g ,  
where e is infinitesimal, the velocity disturbance proportional to E: has two com- 
ponents, the first of which eii satisfies 

rc4 = Y $ &  on D 

and vanishes on B. Also = 0 and 7$,,,(d) = 0 in D. These conditions fully deter- 
mine fi as a transformation of ti given on the free surface, and we can define an 
extension of g into D according to ii = a(/at. In  effect, e( in D is an infinitesimal change 
in the Lagrangian, particle description of the liquid motion, and evidently &,* = 0 
in D and 4 = 0 on B. The second component of the velocity disturbance is required 
to satisfy the tangential-stress condition (17) on the perturbed free surface, but it 
will not be needed explicitly. 
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Now, the linearization of (26) will present terms ~ ~ ~ ~ ~ ( i i )  together with terms in the 
other velocity component, which are comparable with the linearization of R in (3), 
and terms in 4 from the linearization of a V/a& Multiplying by &, summing over i 
and integrating over Q, we find the leading integral to be reducible by retracing in 
reverse order the steps from (20) to (21). The result to O(9)  is 

where F(4)  is the positive-definite functional (19) evaluated in the displacement 6 
rather than in velocity as before. 

We hence conclude that, for an arbitrary perturbation, 

€2- dF(4) = - (second variation of V evaluated in €4) 
dt 

+ (quadratic term in < depending on w ) .  

The second term on the right will generally be comparable with that on the left, but 
this fact is unimportant for present purposes. If w > 0 is small enough, the bubble 
will be little different in form and position from the configuration that minimizes V 
subject to S being a complete surface (i.e. with zero contact angle between S and B). 
The second variation of V relative to its actual configuration will therefore still be 
positive, and will dominate the second term on the right provided w is small enough. 
Thus we have dP(g)/dt < 0, whence consideration of F(4)  > 0 as Lyapunov function 
confirms stability. 

3. Experiments: apparatus and procedure 
The central component of the apparatus was a high-quality cast Perspex cylinder 

of internal diameter 77.3 mm. One end of the cylinder was closed with a removable 
but tight-fitting lid made of Duralumin, into which an axle was fixed centrally. A 
thick Perspex lid was cemented onto the other end, and the complementary axle 
passing through it was tapped into a Duralumin piston which had a fairly tight sliding 
fit inside the cylinder. The space between the plane forward face of the piston and 
the plane face of the removable lid was the test section, the length L of which could 
be varied to any desired value. For the main sets of findings to be recorded in $4, 
the ratio of L to the internal radius R was adjusted to just three representative values, 
namely L / R  = 2.6, 3.0 and 3.4. 

The axles were mounted horizontally in bearings a t  each end, which together with 
the driving motor and gearbox described as follows were fastened to a base plate 
supported on levelling screws. During assembly of the apparatus before an experi- 
mental run great care was taken to check accurate alignment of the axles with the 
horizontal. The rotation of the cylinder was driven by a Unimatic digital stepping- 
motor (Model 20-2215-D) through a 6: 1 reduction gearbox and flexible coupling, free 
of backlash, to one of the axles. The angular velocity w of the cylinder was variable 
and accurately controllable over a wide range by adjustment of the pulse rate 
delivered to the stepping-motor unit by an electronic function-generator. A 50 MHz 
timer-counter was used to measure the pulse rate and hence determine w with great 
accuracy. 

Since the phenomena under investigation are sensitive to the viscosity of the liquid 
no less than to w ,  comparable care was needed to control viscosity. The whole 
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apparatus was installed in a glass-walled box within which the temperature of 
circulating air was automatically maintained at 27.45 f 0.15 "C. Experimental runs 
typically took many days, during all of which time the temperature of the apparatus 
stayed under control. The viscosity of the liquid used, Golden Syrup, was measured 
at the same temperature by a high-precision rheogoniometer, and its density was 
also measured. Most of the dimensionless results presented in $4 were calculated 
on the basis of the measured value of kinematic viscosity v = 0.0144 m2 s-l (i.e. 
1.44 x lo4 centistokes). 

The volume fraction V, of viscous liquid in the test section was a principal 
parameter of the experiments, being varied as follows without the need to dismantle 
the apparatus. Small threaded holes in the Duralumin lid were stopped off tightly 
by bolts when the apparatus was running; but with the apparatus at rest they could 
be unstopped, and through them liquid could be inserted into or withdrawn from the 
test section by means of a long thin metal tube connected to a syringe. After such 
an adjustment, V, was estimated accurately from measurements of the bubble with 
a cathetometer. 

For reasons to be explained in $4, it was found necessary to be able also to remove 
liquid from the test section while the cylinder was rotating steadily. For this purpose 
a modified syringe was mounted on the apparatus, rotating with the cylinder and 
enabling liquid to be withdrawn gradually through a coaxial hole in the axle that 
positioned the piston inside the cylinder. 

With the test section filled to a known V,  and the whole apparatus left long enough 
for its temperature to have settled at the controlled level, the experimental procedure 
consisted for the most part in varying o by very small steps, allowing typically at 
least a minute between each step, until a critical event was observed marking a loss 
of stability by the original state of flow. When critical values of w ,  approached from 
above or below, had been noted roughly, the estimates of them were refined by 
progressively more gradual approaches to the limit of stability. Experience showed 
that considerable practice and care were needed to make such measurements 
repeatably from day to day. 

4. Experimental results 
Apart from the geometric ratios L / R  and V,, the parameters of the experiment are 

o, the viscosity p, density p and surface tension r~ of the liquid, and the gravity 
constant g. The dimensionless number v/pgR2 indicates the relative importance of 
surface tension and gravity; and for our experimental conditions it is about 2 x 
small enough to indicate that surface tension was not a primary influence. Even if 
a lengthscale 0.1R is taken as more representative, the value 0.2 of this number is 
still small enough to support the conclusion. Although surface tension may well have 
been important in some of the rapid transitional events observed, also perhaps in the 
steady flows at the highest 5, it seems reasonable to ignore surface tension in the 
scheme of dimensionless correlation for the results. Accordingly, on the supposition 
that the observed behaviour was essentially an interplay of viscous effects and 
gravity, the relevant load parameter is evidently the dimensionless group 6 = ov/gR, 
where v = p/p is the kinematic viscosity of the liquid. 

Our supposition about the comparative unimportance of inertial effects, in 
particular centrifugal forces, is reasonably well justified. The Reynolds number 
oR2/v is unity for { = 0.366, near the top of figure 3 introduced below ; but for most 
of the phenomena recorded this Reynolds number is one or two orders of magnitude 

14 F L M  183 



412 T. B. Benjamin and S .  K .  Pathuk 

10 

- 
lo-' - 

10-5 - - 
- 

' D  
2 x  10-41 I I I I I I 

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 
Vf 

FIGURE 3. Experimentally determined critical points in (V,,tJ-plane, where V ,  is volume fraction 
filled by viscous liquid and < = wv/gR. Loci CA and CB correspond to changes from one-cell to 
two-cell flows, FED and GHI vice versa. 

smaller. Although events represented in the upper part of the figure may have been 
affected marginally by inertia, the overall interpretation ignoring inertia appears to 
be secure. 

Measured critical values of [ are plotted against V, in figure 3, and reference to the 
figure will help us to explain what was observed. Consider a value of 5, say 0.85, 
such that a vertical line from the V, axis interects all three of the curves ED, CA and 
CB respective to LIR = 3.4. Three critical values of { are thus in question, and they 
were estimated experimentally as follows. 

First, when the apparatus had been set with LIR = 3.4 and V, = 0.85, say, the 
angular velocity w of rotation was increased in small steps from zero. At each new 
value of w the air bubble contained by the moving liquid quickly underwent a minute 
adjustment to its elongated form near the top of the cylinder, and soon became steady 
again. As the first critical value w1 (giving C;, = w1 vIgR) was approached, the upper 
and lower parts of the bubble surface near its middle began to dent inwards, but the 
form remained stable. At values of w still nearer wl, time-periodic undulations 
appeared whose phase was observed to travel from one end of the bubble to the other. 
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(By reduction in size and prolongation of the steps in w leading up to wl, careful 
attempts were made to avoid these undulations, which surprisingly broke the 
leftiright symmetry of the original bubble relative to the central cross-sectional plane 
of the test space. In  the end, however, it  was concluded that they were an inherent 
feature of the motion in this narrow parameter range.) The undulations amplified 
when w was raised further; and finally, at  the value wl, the bubble began an 
irreversible transition, ending in the steady divided form as exemplified in figure 1. 
The two cells were generally more or less symmetrical relative to the central plane, 
but seldom exactly so. The measured Cl provided one point on the curve CA in 
figure 3. 

With the two-cell form established, w was then reduced in small prolonged steps. 
The cells became progressively closer and finally, at a critical value w2 < wl, the 
dividing screen of liquid collapsed, whereupon the original undivided form of the 
bubbles was rapidly regained. The measured [, < 5, provides a point on the curve 
ED in figure 3. 

Next, from w, with the single bubble well established, w was suddenly increased 
to well above the first critical value wl. An elongated form of the bubble was thereby 
realized stably near the axis of the rotating cylinder, constituting a secondary mode 
of time-independent solutions since the morphogenesis induced by a gradual approach 
to w1 along the original solution branch had been by-passed. The value of w was then 
reduced in small steps. Time-periodic undulations breaking the lefkight  symmetry 
again appeared as a critical value w3 > w1 was approached from above; and for 
w = w3 the bubble divided just as for w = wl, coming to rest in the two-cell form 
observed previously. The measured Q provided a point on the curve CB in figure 3. 

For each volume fraction V, the sequence of estimates [1+[2-+[3 was repeated 
twice, great care being taken to  approach the critical values of w very gradually and 
slowly. The same measurements were made after V, had been adjusted to each of 
various values; and the whole experiment was repeated with LIR = 3.0 and 2.6 as 
well as 3.4. All the experimental curves to the right of point C in figure 3 were thus 
gradually derived. 

It is notable that the curves CA and CB respective to LIR = 3.4 appear to compose 
a cusp at their right ends, likewise C"A" and CUB" respective to LIR = 2.6. At the 
highest recorded values of V ,  near 0.98, however, where the bubbles were quite small, 
control of the experiment become more difficult and the measurements were 
somewhat uncertain. It should be acknowledged also that measurements in the 
neighbourhoods of points C, C' and C" were extremely delicate, so that estimates of 
curvature at these extreme points could not be made with confidence. 

As will be explained in $5,  the observed coincidence of the loci of 5, and 5, ws. V, 
at the points C, C' and C" implies that isolas of two-cell steady states exist for smaller 
values of V, than for these points. For such values of V,, critical values 5, and 5, are 
absent from the spectrum of single-cell states, and so there is no way to evolve the 
two-cell form by speed variations from the easily realizable single-cell form. To obtain 
measurements on the isola in the case LIR = 3.4, we resorted to the device describe 
in the penultimate paragraph of $3. 

The procedure adopted can be explained by reference again to figure 3. For 
LIR = 3.4 the critical value V, of V,, represented as the horizontal coordinate of 
point C, is about 0.75. With the volume fraction of liquid set to a value V, > V,, 
w was gradually increased from small values through wl, so that transition to  the 
two-cell form occurred, and conditions were allowed to settle at a point ( V,,[) such 
as marked 1 in the figure. With the rotation rate maintained, some liquid was then 

14-2 
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withdrawn from the test section by means of the pre-attached syringe ; this process 
was executed very slowly to ensure that the varied conditions inside the rotating 
cylinder remained in the domain of attraction of the steady two-cell flow. The 
withdrawal of liquid was stopped at a point such as 2 in the figure, with V, < V, 
but with the two-cell formation still intact. From point 2, w was very gradually 
reduced until at  point 3 the two cells abruptly coalesced into one. The measured V, 
and measured critical value wg provided a point (5, Q) on the extension EF of the 
previously determined curve DE. The termination at P merely represents the 
practical limit encountered by our technique for producing the isolated two-cell 
mode. 

For L / R  = 3.4 we were also able to observe the 5-dependent upper extremity of 
the isola of two-cell states. Having re-established a steady two-cell state at a point 
such as 2, we then gradually increased w to point 4, a t  which critical point the two-cells 
again coalesced into one. The measured critical values Q of g composed the curve GH 
in figure 3. It can be seen that GH rises very steeply at its right end; and although 
an extension beyond H above C certainly exists, it could not be measured with our 
apparatus. This limitation was considered not to be serious because along the 
extension of GH centrifugal effects inevitably overtake the viscous effects of primary 
interest here. 

Experiments were tried with LIR set to values smaller than 2.6 and greater than 
3.4, but additional complications were encountered indicating that the results in 
figure 3 adequately represent a range of distinctive, comparatively accessible 
phenomena. With LIR < 2.6 it  became difficult to find critical conditions gener- 
ating two-cell flows. Another phenomenon was noticed in this case when V, was 
close to 1, and it was presumably much dependent on surface tension. Namely, at 
values of [ somewhat higher than where splitting might have been expected, the 
small bubble detached from its original position of stable equilibrium and periodi- 
cally circuited an orbit in the central cross-sectional plane. With LIR > 3.4 more 
than marginally, on the other hand, approaches to the critical point on the primary 
locus of steady single-cell states were found often to trigger morphogenesis into states 
with more than two cells, the final outcome being less easy to control than in the 
experiments described above. 

5. Discussion 
All the experimental observations recorded in $4 can be understood in the light 

of the general theory developed in $2. The theory gives no quantitative information, 
and indeed none is likely to be available for some time yet ; but the qualitative picture 
provided is reasonably clear. Although a degree-theoretic ordering of the complete 
hydrodynamic problem has not yet been demonstrated rigorously, the direct relation 
shown to hold between the complete problem and its finite-dimensional analogue 
makes the existence of such an ordering extremely plausible. The provisional theory 
can therefore be addressed confidently to questions about the interrelation of multiple 
steady solutions and their stability. 

As exposed by the experiments, the disposition of the time-dependent solution set 
in respect of its dependence on the load parameter 5 and secondary parameter V, is 
illustrated in figure 4. This figure is schematic, referring particularly to the observa- 
tions for LIR = 3.4, and the ordinate h could represent any property discriminating 
between single and divided forms of the bubble. But values 1 or 2 are assigned to 
h over most of the c-parameterized loci of stable steady states in order to highlight 
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FIGURE 4. Schematic diagrams representing set of steady solutions parameterized by C, for 
several values of V, with L / R  = 3.4. (a) V, = 0.8(> V, = 0.75); (b)  V,= 0.75 = G,,; (c) 
V, = 0.72 (<  V,,, = 0.75). 

that flows with either one or two cells are represented. The labels S,, S, and S, are 
attached respectively to the primary locus of single-cell states, which starts at small 
C and terminates at 6 = c, when V, > V,, to the locus of stable two-cell states, and 
to the locus of single-cell states that is secondary, being disconnected from S,, when 
V, > V,. All three of these loci must have index i = 1 over most of their lengths (cf. 
$2.1, property (iii)), and everywhere if the possibility of symmetry-breaking 
bifurcations near the termini of S, and S, is excluded (see below). 

Now, the theory indicates that S, cannot end in isolation at C = c,. Instead it must 
be complemented by a branch of steady solutions with index - I ,  which joins S, at 
a one-sided bifurcation point (turning point) aa illustrated in figure 2 (a ) .  Being 
unstable these solutions cannot be realized experimentally ; but their existence must 
be presumed in order to make sense of the experimental observations. The unstable 
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FIGURE 5. Schematic representation of solution set aa folded surface above 

parameter plane ( 5, g). 

branch probably joins S, at  y = c,, where another turning point is required to account 
for the observations. The observed hysteresis is indicated by arrow heads on the left 
in the figure. Similarly, as also illustrated in figure 4(a), a complementary branch of 
unstable solutions is implied by the observations as 5, is approached from above along 
S,; and it probably links with the turning point that terminates S, at Q. This turning 
point at high g was only observed for V, < V, but presumably always exists if 
inertial effects are allowed; for evidently the two-cell state will always ultimately 
be collapsed by centrifugal force if w is made large enough. 

When the geometric parameter V, is reduced to its critical value V, (= 0.75 for 
L / R  = 3.4), the two turning points originally at 5 = on S, and S, 
combine as a transcritical bifurcation point, exemplifying the process illustrated in 
figure 2 ( b ) .  The four solution branches necessarily involved in the bifurcation, two 
with index 1 and two unstable, are unfolded for V, < V, as a continuous branch with 
index 1, namely the marriage of S, and S,, and a continuous branch with index - 1 
which is therefore unstable. The locus S, of two-cell steady states is then wholly 
isolated from the primary locus, which extends continuously from w = O +  to 
indefinitely high values of w.  

A three-dimensional view of this basic situation is shown in figure 5 ,  where the 
arbitrary discriminating function h is plotted against position in the parameter plane 
( V , , C ) .  The cross-sections marked (a) ,  ( b )  and ( c )  correspond, of course, to the three 
parts of figure 4. The extreme points C and J, corresponding to least values of V,, 
are sure to be ordinary turning points, although as noted in $4 it was difficult to 
estimate curvature at  C .  The point J could not be reached experimentally, but it 

and 5 = Q > 
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presumably exists representing the final vestige of the two-cell isola. When V, is less 
than its value at J, no steady two-cell state is possible. 

As the results in figure 3 show, the curves of singular points in the (V,, Y)-plane 
remain basically similar when the third parameter L / R  takes values smaller than 3.4. 
But qC becomes higher, as might be expected since the two-cell mode is obviously 
at a relative disadvantage in the shorter cylinder. For the same reason, the value of 
V, at point J surely must increase with decreasing L / R ,  although we were unable to 
check this conclusion. 

The distinctly cusp-like character of the experimental curves at  their ends on the 
right in figure 3 is not yet understood. There is no inconsistency with the rules of 
singular behaviour summarized in $2.1, but we see no obvious reason for a cusp 
catastrophe to be exemplified - as would be presented for example, by the unfolding 
of figure 2 (c) by a symmetry-breaking parameter. A simple guess would be rather that 
curves such as CA and CB should terminate at a turning point, like that at C, as V, 
is made close enough to 1. The possibility of surface tension becoming predominant 
in this region, however, coupled with that of the comparatively small bubbles being 
then particularly susceptible to symmetry-breaking bifurcations from a central 
position, make the present question an interesting target for further study. 

It remains to account for the periodic undulations observed in neighbourhoods of 
the critical values [, and Q on the loci 8, and 8, when V,  > 5,. The measurements 
of 5, and 5, were probably marginal underestimates and overestimates, respectively, 
because of these effects. That is, as 6 was raised towards C,, the limit cycles observed 
to be centred on points of 8, near its extremity will eventually have broken outside 
the local domain of attraction before the turning point of the steady solution set was 
reached. Important clues to a full explanation are given, however, by the observation 
that the amplitude of the undulations grew steadily from zero as [ was increased 
through a narrow interval below C1, suggesting a supercritical Hopf bifurcation, and 
above all by the observation that the unsteady motions broke the left-right 
symmetry of the original stable steady state. 

In fact, the situation observed appears to be much the same in principle as one 
recently explored in great detail by Mullin, Cliffe & Pfister (1987). The comparable 
situation is presented over a narrow parameter range by one of the secondary modes 
observable in the Taylor-Couette experiment ; and the cited investigation combines 
experimental observations and confirmatory numerical solutions of the Navier- 
Stokes equations by supercomputer. Of particular relevance at present, their 
investigation bears out predictions relating to a class of singular behaviour already 
much studied in modern theories of finite-dimensional dynamical systems (see 
Guggenheimer 1981). 

The prototype in question may be summarized as follows with reference to 
figures 2 (a and c). Suppose that a system possessing a discrete symmetry (e.g. the 
left-right symmetry of our system) has a turning point in the set of time-independent 
eymmetric solutions as the load parameter 5 is varied. As illustrated in figure 2(a) ,  
a 5-parameterized branch with index 1 calculated in the class of symmetric states and 
stable to symmetric disturbances joins at the turning point [ = 5, a branch with 
index - 1 and so unstable in this class. It is immaterial here whether the branches 
exist for 6 > 5, or for 5 < 5, ; but let us fix attention on the latter case. Suppose next 
that at = 5* < 5, near the turning point either the stable or unstable branch suffers 
a supercritical symmetry-breaking bifurcation ; two branches of asymmetric steady 
solutions, say T+ and r-, being necessarily in parity and so having the same index, 
exists for [ > [*. This situation is illustrated in figure 2(c). (It seems to be generally 
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true that symmetric systems are prone to symmetry-breaking bifurcations near 
turning points (cf. Benjamin 19783, figure 6; Benjamin & Mullin 1982, $4.4).) 

One may suppose also that by continuous variation of some auxiliary parameter 
e the bifurcation point at y = [* can be moved into coincidence with the turning point 
(i.e. y* = for E = 0, say). In this special case one has a bifurcation point of 
codimension 2, which description merely means that two parameters are needed for 
a general unfolding. This case is a rare occurrence, of course, but it is highly significant 
as the organizing centre for the phenomena recognizable as follows. 

A reckoning of the sum of indices according to rule (i) of $2.1 establishes the 
following necessary facts. When indices are calculated in the class of all functions, 
symmetric and asymmetric, the index along one branch of symmetric solutions 
changes as 6 passes through y* < 5,. Thus, if for E > 0 the symmetry-breaking 
bifurcation occurs on the symmetrically stable branch with i = 1 (because /3 = 0, 
where /3 is the number of unstable reaE eigenvalues as explained below (6)), the index 
of this branch becomes - 1 (/3 = 1) in the interval (f;*, Q), implying instability to 
asymmetric disturbances. Then the unstable symmetric branch has index 1 (/3 = 2). 
This disposition of indices is shown in figure 2 (c). Again, if for e < 0 the bifurcation 
occurs on the latter branch, this branch must have i = - 1 (/3 = 1) for c* < 6 < Q 
but i = 1 (/? = 2) for 6 < g*. 

Because the branches r+ and r- of asymmetric solutions point in the direction of 
6 increasing, opposite to that of the symmetric branches for 6 < Q, their common 
index must accordingly be 1 in all cases. Because of their parity, moreover, r+ and 
r- cannot be detached from the loop of symmetric solutions without participation 
by two extra asymmetric branches with common index -1, which additional 
complication can be excluded typically. Therefore a continuous variation of the 
auxiliary parameter e, through its value 0 producing the double singular point a t  
[* = Q, can only move the symmetry-breaking bifurcation from one to the opposite 
branch of symmetric solutions. Note incidentally that the double singular point must 
have i = 2 to comply with rule (i). 

The last, crucial details of this situation can now be appreciated, indicating that 
part of the spectrum associated with r+ and r- necessarily complexifies in a 
neighbourhood of the codimension-2 point. Note first that when bifurcating from the 
stable branch of symmetric solutions, r+ and r- must start by having i = 1 because 
/3 = 0; they thus exchange stability with the symmetric branch. On the other hand, 
when bifurcating from the unstable branch of symmetric solutions, they must start 
by having i = 1 because /3 = 2, thus copying properties of this branch for 5 < [*. But 
the properties of solutions along the whole of r+ and r- cannot change discontinu- 
ously as E passes through 0. For e < 0, therefore, there must be points along these 
branches, say = [** > [*, at which /3 changes from 2 to 0, specifically because the 
two positive (unstable) real eigenvalues in the tally /3 = 2 coalesce at 6 = C;** and 
become a complex-conjugate pair for 5 > g**. Just two possibilities are now in 
question. First, if for e < 0 the branches r+ and r- are to become stable for larger 
y, there must be points along them, say ( = c*** > [**, at which with increasing g 
the complex-conjugate pair of eigenvalues crosses the imaginary axis leftwards. These 
points may represent Hopf bifurcations approached as 5.1 [*** along r+ or r-. 

Secondly, and probably more relevant to the present application, it is possible that 
for e > 0 the branches r+ and r- may not remain stable over all their lengths. Then 
the two salient eigenvalues (whose zeros respectively determine the critical points c* 
and c,) are negative for [* < 6 < [** along these branches, coalesce at 6 = {**, 
become complex conjugates for 6 > C**, and cross the imaginary axis rightwards at 
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< = <*** > <**. Thus, for E > 0, we still have B = 0 everywhere along r+ and r-, 
but these branches may lose stability through a (supercritical) Hopf bifurcation at 
< = <***. For E < 0 in this case, the branches are unstable for all < > <*; complexi- 
fication occurs as in the first case by coalescence of two positive real eigenvalues, but 
the complex-conjugate eigenvalues remain to the right of the imaginary axis. In  either 
case the differences <*** - <* and <*** - [* will vanish as E passes through 0. 

The main interest of this prototype arises from its implications as a component 
of a time-dependent model with t-derivative terms entering in a standard fashion, 
which is exemplified by the class of systems treated in $2.1. Limit cycles breaking 
the spatial symmetry are known to be a concomitant of the ordering of stationary 
solutions in a parametric neighbourhood of the double singularity (Guggenheimer 
1981). We appear therefore to have identified a qualitative explanation of the 
observed unsteady motions near the extremities of S, and S,. It is possible that as < was raised towards <, along S,, for example, a bifurcation into asymmetric steady 
states was in fact encountered first, and then there was a Hopf bifurcation into a limit 
cycle centred on one of the asymmetric branches; but we must admit that such 
progressive departures from symmetry preceding the onset of unsteadiness were not 
investigated systematically. Asymmetry nevertheless always became conspicuous 
when the periodic undulations appeared. The great precision that Mullin et al. (1987) 
report to have been needed in their investigation suggests that further experiments 
made with extraordinary care will be required to settle these remaining aspects of 
our problem. 

The experimental work was done in the laboratory of the Fluid Mechanics Research 
Institute at the University of Essex during the academic year 1977/78, when S. K.P. 
was on sabbatical leave from the University of Roorkee. The valuable help given by 
Mr J. Bartington, Technical Assistant in the laboratory is gratefully acknowledged. 
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